

1

Development of a Sensorimotor Algorithm
Able to Deal with Unforeseen Pushes and Its

Implementation Based on VHDL
Bachelor Thesis

Pablo Gabriel Lezcano Giménez

Matrikelnummer: 821978

SS 2015

Betreuer BHT: Prof. Dr. Hild
Gutachter: Prof. Kersten

Beginn Datum: 03. August 2015
Ende Datum: 03. November 2015

Abgabe Datum: 02. September 2015

2

Acknowledgements
I would like to express my gratefulness to Prof. Dr. Hild for giving me the opportunity to

do my Bachelor thesis in the robotics field.

My special thanks to Benjamin Panreck, my colleague and constant supervisor, for his

patience guidance, encouragement and useful suggestions on my research work.

To my colleague Pablo de Miguel, who became a good friend during my year in Berlin and

contributed with great effort with many common features to both our theses.

I would also wish to thank Marcus Janz and Christian Thiele for their great assistance in

some difficulties I encountered during my work.

To Stefan Bethge, Jörg Meier, Peter Hirschfeld and the rest of the Neurorobotics Research

Laboratory, for making me feel integrated from day one.

To my friends of the Universidad Politécnica de Madrid César, Fabi, Sancho, Fernando,

Andrés, Sergio, Alberto and many others. I am particularly grateful to get to know each and

every one of you and to spend countless hours both studying and having fun during the

last 3 years. There's not enough money in the world to thank you, so I won't be paying any

rounds.

This thesis is dedicated to my sister and my parents, who supported me throughout the

whole degree.

3

Abstract
 There's no doubt about the increasing role played by robotics in today's society. We see it

every day applied to the fields of medicine, industry, consumer electronics or even art.

Some of these applications are fundamentally made with the purpose of interacting

between humans and machines. This human machine interaction is one of the countless

parts in the field of robotics that is in continuous development.

"Defying gravity - A Minimal Cognitive Sensorimotor Loop Which Makes Robots With

Arbitrary Morphologies Stand Up" [1] by Prof. Dr. Manfred Hild establishes the point of

departure of this thesis. It defines an electronic circuit and a VHDL algorithm that fights

against varying external forces without the employment of a sensor (in its most strict

definition). Sometimes the application would require to ignore some of these forces

(pushes) while still considering others (gravitational force). "Development of a

Sensorimotor Algorithm Able to Deal with Unforeseen Pushes and Its Implementation

Based on VHDL" is a Bachelor thesis with the object of developing, experimenting and

documenting a Cognitive Sensorimotor Loop (CSL) algorithm able to differentiate a

pushing motion from the gravitational force and decide whether or not to work against it.

This new behavior in the CSL has a whole variety of applications and advantages as energy

saving or submission to assistive forces among others. This thesis converse mainly around

two models, one based on parameterized thresholds and the other one based on a filter,

both of them with their own limitations.

This thesis, elaborated during my ERASMUS year in Berlin, concludes my bachelor studies

in Electronics Engineering at the Universidad Politécnica de Madrid and Elektrotechnik/

Mechatronik at the Beuth Hochschule für Technik Berlin. In it I wrap up, among other

competences, the knowledge I acquired in VHDL hardware modeling. This thesis has

some common ground with the bachelor thesis "VHDL-Based System Design of a

Cognitive Sensorimotor Loop (CSL) for Haptic Human-Machine Interaction (HMI)" by

Pablo de Miguel Nogales and the master thesis "Entwicklung eines Adaptativen

Regelungsmechanismus für die Bewegungsoptimierung modularer Aktuatoren" by

Benjamin Panreck. The three theses contain some inherited work regarding data

visualization among other things, while some other modules were written "as a team" to

extend features which are common in the three of them.

4

Table of contents

Acknowledgements .. 2

Abstract ... 3

1. Personal motivation .. 6

2. Objectives ... 7

3. Basics and mathematical foundations ... 7

3.1. Infinite Impulse Response (IIR) Filters .. 7

3.2. Fixed comma data type .. 9

4. A quick introduction to Cognitive Sensorimotor Loops (CSLs)............................ 11

5. System overview and components ... 13

6. Voltage integration. Drift in the measure .. 17

7. Drift cƻƳǇŜƴǎŀǘƛƻƴǎΦ CƛȄƛƴƎ ǘƘŜ ɲʅ-Modulator offset 20

7.1. Dead Zone ... 20

7.2. Linear compensation ... 22

7.3. Measures module. Finite State Machine ... 23

8. Common modules description ... 26

9. Faders module. Keyboard's battery of faders. .. 33

10. Systems based on parameterized thresholds .. 37

10.1. System overview ... 37

10.2. Static threshold model ... 38

10.3. Incremental threshold model ... 40

10.4. VHDL implementation. push_ignore.vhd .. 41

10.5. VHDL implementation. Control.vhd .. 43

10.6. Resources and power consumption. ... 49

10.7. Outlook ... 50

11. System based on a push bypassing filter .. 51

11.1. System overview ... 51

11.2. VHDL Implementation. measures.vhd .. 51

11.3. Resources and power consumption .. 53

11.4. Outlook ... 55

ANNEXE 1: Video description. System based on parameterized incremental thresholds

 .. 55

5

ANNEXE 2: Video description. System based on a push bypassing filter 57

Bibliography ... 57

Statement of Autorship .. 58

Table of figures
Figure 1: IIR discrete-time low-pass filter example... 7

Figure 2: Integral filtering ... 8

Figure 3: right-shift operation of a 4 bits two's complement number .. 9

Figure 4: System overview used by Prof. Dr. Hild in [1]. (figure imported from [1]) 11

Figure 5: Pulse Width Modulation example ... 12

Figure 6: Connection overview ... 13

Figure 7: ZYBO board .. 14

Figure 8: CSL Pmod ... 14

Figure 9: MIDI Pmod ... 14

Figure 10: MIDI keyboard ... 14

Figure 11: VGA display .. 15

Figure 12: DC motor ... 15

Figure 13: Mounting surface .. 15

Figure 14: Power supply ... 15

Figure 15: Motor structure ... 15

Figure 16: MIDI cable.. 16

Figure 17: VGA cable .. 16

Figure 18: banana cable ... 16

Figure 19: USB cable ... 16

Figure 20: Laptop .. 16

Figure 21: Differential Voltage-bit density of Delta-Sigma modulator ... 17

Figure 22: Drift vs Sense-time ... 18

Figure 23: Delta-Sigma datasheet extract .. 20

Figure 24: Dead zone characteristic curve .. 20

Figure 25: Asymmetrical Dead Zone characteristic curve ... 21

Figure 26: Compensation triangle .. 22

Figure 27: Measure sampling ... 23

Figure 28: Measure FSM flow diagram .. 24

Figure 29: faders addresses of the MIDI keyboard ... 33

Figure 30: fader battery FSM .. 34

Figure 31: Parameterized thresholds system overview .. 37

Figure 32: Push detection with static threshold ... 38

Figure 33: False push detection with static threshold .. 39

Figure 34: Missed push with static threshold ... 39

Figure 35: push detection with incremental threshold ... 40

Figure 36: Control FSM flow diagram ... 44

Figure 37: Thresholds system resources consumption overview .. 49

Figure 38: Thresholds system resources (extended) ... 50

Figure 39: Thresholds system power consumption ... 50

Figure 40: Push bypassing filter system overview .. 51

Figure 41: Filter system resources overview ... 53

file:///C:\Users\blapo_000\Desktop\Docu\BachelorThesis_LezcanoPablo.docx%23_Toc428801165
file:///C:\Users\blapo_000\Desktop\Docu\BachelorThesis_LezcanoPablo.docx%23_Toc428801166
file:///C:\Users\blapo_000\Desktop\Docu\BachelorThesis_LezcanoPablo.docx%23_Toc428801167
file:///C:\Users\blapo_000\Desktop\Docu\BachelorThesis_LezcanoPablo.docx%23_Toc428801168
file:///C:\Users\blapo_000\Desktop\Docu\BachelorThesis_LezcanoPablo.docx%23_Toc428801169
file:///C:\Users\blapo_000\Desktop\Docu\BachelorThesis_LezcanoPablo.docx%23_Toc428801170
file:///C:\Users\blapo_000\Desktop\Docu\BachelorThesis_LezcanoPablo.docx%23_Toc428801171
file:///C:\Users\blapo_000\Desktop\Docu\BachelorThesis_LezcanoPablo.docx%23_Toc428801172
file:///C:\Users\blapo_000\Desktop\Docu\BachelorThesis_LezcanoPablo.docx%23_Toc428801173
file:///C:\Users\blapo_000\Desktop\Docu\BachelorThesis_LezcanoPablo.docx%23_Toc428801174
file:///C:\Users\blapo_000\Desktop\Docu\BachelorThesis_LezcanoPablo.docx%23_Toc428801175
file:///C:\Users\blapo_000\Desktop\Docu\BachelorThesis_LezcanoPablo.docx%23_Toc428801176
file:///C:\Users\blapo_000\Desktop\Docu\BachelorThesis_LezcanoPablo.docx%23_Toc428801177
file:///C:\Users\blapo_000\Desktop\Docu\BachelorThesis_LezcanoPablo.docx%23_Toc428801178

6

Figure 42: Filter system resources (extended) .. 54

Figure 43: Filter system power consumption .. 55

1. Personal motivation
Since I was very young, science fiction always caught my eye. As a kid all started with

spaceship toys and films, as usual. One of these films introduced me to short stories and

novels by H.G. Wells, Aldous Huxley, Isaac Asimov, George Orwell, etc.

To me, robotics is making science fiction real or at least getting as close as possible, if that

sounds too corny to some. When the time came to choose a field of research for my thesis,

robotics seemed like the best choice. It has also a lot of professional opportunities in the

fields of biomedical engineering, industry, consumer electronics, automation etc.

Once I was introduced to the Neurorobotics Research Laboratory (NRL) team, I noticed

that It wasn't the average workplace. The team comprehends degrees in computer science,

mechatronics, industrial engineering, physics, mathematics, economics and psychology,

each and every one of them playing a role to develop Myon, a humanoid autonomous

robot. Working the last months in the NRL has challenged my knowledge in both

electronics and VHDL hardware modeling. The second has been particularly challenging,

since I am not especially fond of programming. Nevertheless, It felt really motivating to

research on something that could be applied in the future to anything much more complex

e.g. Myon and in the event of not having satisfying results, help the next researcher to learn

from my mistakes.

"Science doesn't purvey absolute truth. Science is a mechanism. It's a way of trying to improve your

knowledge of nature. It's a system for testing your thoughts against the universe and seeing whether they

match. And this works, not just for the ordinary aspects of science, but for all of life"

- Isaac Asimov

https://en.wikiquote.org/wiki/Science

7

2. Objectives
The objective of this thesis is to document the experiments and overall work done on push

ignoring contractive sensorimotor algorithms, meaning sensorimotor algorithms that

ignore large magnitude forces (compared to gravity) applied in a short time interval on a

pendulum system. This main objective is divided in two sub-objectives:

¶ Developing a system based on parameterized thresholds.

¶ Developing a system based on a push bypassing filter.

3. Basics and mathematical foundations
Before going any further, there are some fundaments that need to be addressed. These

fundaments, which are needed for the system based on a push bypassing filter,

comprehend digital signal processing (DSP), representations in binary numbers and its

mathematical explanations.

3.1. Infini te Impulse Response (IIR) Filters
As the name indicates, IIR filters have an impulse response that continues indefinitely, as

opposed to finite impulse response (FIR) filters. The reason whether to choose IIR or FIR

filters depends on the characteristics desired for the application. For example, FIR filters

can have a generalized linear phase but they cannot be described by closed-form equations,

while IIR filters can. [2]

Since the main desire for this system is to reduce complexity, the right choice is to use an

IIR discrete-time filter:

Figure 1: IIR discrete-time low-pass filter example

Where ὼ[ὲ] and ώ[ὲ] are the input and output samples at the present moment respectively.

A delayed sample (in a past moment) would be represented by ὼ[ὲ ὔ] or ώ[ὲ ὔ]

where ὔ is the sample delay.

8

The graph shows a filter example with low-pass response, which can be observed by the

spikes at the ὼ[ὲ] signal disappearing at the ώ[ὲ] signal. In other words, the fast variations

of the signal within a time period (high frequencies) are cut, hence the low-pass response.

Another thing that can be seen in the graph is the delay introduced by the filter. The blue

signal is displaced at the right of the red one. Depending on the system speed, this can

become a major issue as will be seen further in the 11th chapter.

Now that the IIR filters have been briefly introduced, we can focus in the one required to

achieve the push bypassing. The desired behavior for the IIR filter is as follows:

Figure 2: Integral filtering

This means that the system needs to cut the high frequencies until the abrupt

increases/ decreases are smoothened. In other words, a low pass filter is required. This can

be done analogically with active or passive RC filters or digitally with the FPGA resources.

Since DSP is already a huge subject, this document only will focus in a solution with a low-

pass digital 1st order IIR filter[1]:

ὥ0Ͻώὲ = ὦ0Ͻὼὲ+ ὥ1Ͻώὲ 1

ὼὲ: filter input

ώὲ: filter output

ώὲ 1 : previous filter output (1 period delay)

ὥ0,ὦ0,ὥ1: filter coefficients

One major concern is to calculate the filter coefficients. Since the length of the pushes are

not really specified, it is necessary that the cutoff frequency of the filter can be changed

during the experiments (e.g. via keyboard faders) in order to tune it in real time. Hence a

further simplification was applied to the filter. That way, there's not an actual coefficient

calculation:

9

ώὲ = ὥϽὼὲ+ (1 ὥ) Ͻώὲ 1

Where ὥ is a coefficient between 0 and 1.

There are a few things in terms of computational performance that are interesting to take

note. Considering that a multiplication is a very expensive operation in terms of resources,

a good alternative is using shift operators. Given coefficients between 0 and 1 , the

operation needed is right shifting. Right shifts are then reduced to mere 2ὲ divisions, being

ὲ the number of shifts (
1

2
= 0.5,

1

22 = 0.25,
1

23 = 0.125 and so on).

The use of shift operators brings up another topic regarding data types. The "integral"

variable is type signed, meaning that the 18 bit variable is a two's complement

representation. It's important to make sure that shifting right produces a correct number.

Let's do a simplified explanation based on 4 bit numbers1:

Bit Bit

Number 3 2 1 0 Number 3 2 1 0

-8 1 0 0 0 4 0 1 0 0

-4 1 1 0 0 2 0 0 1 0

2 1 1 1 0 1 0 0 0 1
Figure 3: right-shift operation of a 4 bits two's complement number

A quick view of the tables shows that a correct shift in two's complement representation

must introduce into the MSB position the previous MSB value. From another point of

view, a two's complement number can be increased in range (without changing the value)

just adding '1's at the left if the number is negative and '0's if the number is positive:

0100ὄὍὔ = 0ȣ0000 0100ὄὍὔ

1011BIN = 1ȣ1111 1011BIN

In VHDL, this problem is automatically solved by using the "IEEE.NUMERIC_STD"

package, which supports shift operations for signed numbers.

3.2. Fixed comma data type
As seen in the sub-chapter above, the filter uses decimal coefficients between 0 and 1. This

characteristic is mandatory or the filter won't work properly. Therefore, it generates a need

of a number representation with decimals for VHDL. For this matter, there are two

options available.

First option would be to download an extended package that supports fixed or floating

comma data types. Learning syntax rules for custom packages takes time and even after

1 4 bit numbers can represent from 0 to 15 in normal binary and from -8 to 7 in two's complement.

10

that there can be some unsolvable synthesis problems with the developing software, since

the package is not official. That being said, it's highly recommended to go for a second

option.

The second option consists on making a few operations to customize the signed data type

and use it like a fixed comma data type. Let's go back to 4 bit numbers for the explanation,

e.g. number 7 in decimal notation.

0111ὄὍὔ = 22 + 21 + 20 = 4 + 2 + 1 = 7ὈὉὅ

If we add negative powers at the right of the zero power, where the comma would be

located, we can obtain a kind of fixed comma representation.

0100 . 0111ὄὍὔ = 22 + 2 2 + 2 3 + 2 4 = 4 +
1

4
+

1

8
+

1

16
=

= 4 + 0.25 + 0.125 + 0.0625 = 4.4375ὈὉὅ

Now it's possible to have ὲ decimals after the comma, being the resolution of the part after

the comma
1

2ὲ
 .

11

4. A quick introduction to Cognitive Sensorimotor Loops (CSLs)
The original CSL used in [1] by Prof. Dr. Hild is based on an electronic circuit with two

main parts: a 1 bit delta-sigma (ǃǑ) modulator and a H-bridge driver connected to a

Complex Programmable Logic Device (CPLD).

Figure 4: System overview used by Prof. Dr. Hild in [1]. (figure imported from [1])

The ǃǑ modulator (AMC1203) works as an analog-to-digital converter (ADC)[5]. It is used

to measure the back electromotive force2 (back EMF) in the terminals of a DC motor. The

back EMF is a force that opposes to the electric current that induced it, as described in

Faraday's law of induction and Lenz's law. In DC motors, this back EMF is proportional to

the speed of rotation and therefore it can be used to infer the spinning speed. Applying a

voltage in the terminals of a DC motor will produce the motor to start spinning and thus it

will create a back EMF, which can be measured as a voltage with the opposite direction to

the voltage applied. If the source that applies the voltage is disconnected and connect a

multimeter to those same terminals, the multimeter will measure then a voltage

proportional to the back EMF and therefore the rotation speed will be inferred. With this

principle, the CSL operates first measuring the back EMF and then driving in relation to

the magnitude of the force in such a way that the DC motor serves both as an actuator and

sensor -[1] and it will fight against the forces applied such as gravity or external pushes.

 The H-bridge driver is entrusted to give the motor a particular power to rotate with a

certain speed. This H-bridge topology allows to run the DC motor in both directions

among two other features: brake and coast. Braking the motor happens when the driver

outputs a low-level logic value to both terminals. In other words, the terminals are short-

circuited and the motor will eventually stop. To coast the motor, the driver outputs a high

impedance (Hi-Z) logic level, which is in practice an open circuit. The behavior of the

motor will then be as nothing is connected to its terminals.

2 Sometimes also addressed as counter-electromotive force (counter EMF).

12

The driver can be powered with a single unipolar positive voltage for both driving

directions, which is a major advantage. The CSL algorithm drives the motor by using the

Pulse Width Modulation (PWM) technique. This means that the power that receives the

motor depends on the duration of the pulses of an square signal:

Figure 5: Pulse Width Modulation example

The above figure shows different duty cycles (DTCs) for the square signal with period Ὕ.

The higher the magnitude in the force applied to the motor, the higher the DTC on the

PWM signal applied by the H-bridge driver will be and therefore the faster the rotation

speed of the motor will be.

The CPLD that run the original sensorimotor algorithm in [1] has been substituted in this

system for a Field Programmable Gate Array (FPGA) , which has a vast amount of

resources compared to CPLDs. The late CSLs are based on an electronic circuit connected

to a development board via one of its Pmod inputs. This board, which has among other

elements the previously mentioned FPGA, is configured to behave like a certain specific

hardware by the use of the hardware description language VHDL 3. In [1] the CPLD ran a

Finite State Machine (FSM) with two states: sense and drive.

In the sense phase, the ǃǑ-Modulator measures the back EMF and transmits a binary

signal to the CPLD or FPGA. This sense phase, which is constant, lasts 10ms. In order to

have a correct back EMF measure, the H-bridge must be configured to coast position,

otherwise the measure will be compromised when a voltage is applied to the terminals.

The FPGA gathers the data until the sense phase is finished. Then, a transition in the FSM

will happen, entering the drive phase. [1]

In the drive phase the algorithm will decide, depending on the back EMF gathered in the

sense phase, whether or not to drive the motor and for how long. If the back EMF is

positive, it means that the force that produced it was negative. The algorithm drives the

motor "Forward" when the back EMF is positive and "Reverse" when it's negative. This

3 in this case it's used VHDL. There are other hardware description languages e.g. Verilog, which was the
language used by Prof. Dr. Hild in [1].

13

way the CSL drives the motor opposing to the external force that produced it when it was

collected in the sense phase. The other issue is how much time in which the drive phase

occurs (since it's not constant as the sense phase), in other words, the time in which the

motor is being driven. Here is where the PWM takes place. Depending on the magnitude

of the back EMF measured in the previous sense phase, the driving time will be lower or

higher, hence and for all practical purposes, a PWM. [1][5][6]

These sense-drive transitions are in constant loop during the operation and producing the

desired behavior.

5. System overview and components
This chapter contains a brief description of the elements that form the system and the

connections between them.

5.1. Connection overview
The figure below shows how the inputs and outputs of each component are related, as well

as the cables used.

 Figure 6: Connection overview

Where every element of the figure above is further described in the next sub-chapter

14

5.2. ZYBO Zynq-7000 Development Board
Development board by the manufacturer Xilinx,

where the whole system converges around. It has

a 4.400 logic slices FPGA (each slice with four 6-

Input LUTs and 8 flip-flops), PLLs (to create

clock sources), fast block RAM, 16-bits per pixel

VGA port and Pmod connectors, among other

elements. [3], [4]

5.3. Cognitive Sensorimotor Loop

(CSL) Pmod
Circuit that combines both sensor and driver. It's

based on a H-Bridge driver and a Delta-Sigma

modulator. [1] [5] [6]

5.4. MIDI Pmod
Converts the DIN-5 connector into Pmod

standard. It's used to receive MIDI messages sent

from the MIDI keyboard.

5.5. miditech i2 -Control 37 keyboard
Keyboard used to transmit MIDI messages via its

analog faders.

Figure 7: ZYBO board

Figure 8: CSL Pmod

Figure 9: MIDI Pmod

Figure 10: MIDI keyboard

15

5.6. VGA Display
Used to visualize pertinent data. Commercial

DELL display where the VGA modules will be

running at 1024x768 resolution and 70Hz

refresh.

5.7. Lego Technic Motor 9 Volts
DC Motor run by the CSL Pmod.

5.8. Mountin g Surface
estructural base for the ZYBO and the motor

structure.

5.9. ELV DPS-5315 DC-Power Supply
Provides DC power to the CSL Pmod and

indirectly the motor.

5.10. Motor structure
Fixes safely the motor against mechanical forces

and torques.

Figure 11: VGA display

Figure 12: DC motor

Figure 13: Mounting surface

Figure 14: Power supply

Figure 15: Motor structure

16

5.11. Wiring
Self-explanatory.

5.12. PC
Used to run the Xilinx Vivado SW and

program the ZYBO.

Figure 16: MIDI cable Figure 17: VGA cable

Figure 19: USB cable Figure 18: banana cable

Figure 20: Laptop

17

6. Voltage integration. Drift in the measure
To measure the counter-electromotive force (counter EMF) of the motor, the CSL-PMod

has an analogical-digital converter based on a Delta-Sigma Modulator (ǃǑ-Modulator).

This ǃǑ-Modulator generates a flow of bits depending on the differential voltage between

terminals of the motor. Here's an example taken from the datasheet [4] to explain its

operation:

Differential Voltage Percentage of '1's Percentage of '0's

256mV 80% 20%

0V 50% 50%

-256mV 20% 80%
Figure 21: Differential Voltage-bit density of Delta-Sigma modulator

This means that when the motor is at rest, the ǃǑ-Modulator should output 50% of '1's

(high-level logic values) and '0's (low-level logic values). The problem is that, in practice,

the percentage of '0's is bigger than 50% when the motor is at rest, and the captured value

with VHDL is drifting from the one corresponding to 0V.

In VHDL coding, this simplifies in having a counter that is incremented when a '1' is

received and decremented when a '0' is received.

elsif mdat='1'then
 if v_ena='1' and voltage<131071 then
 voltage<=voltage+1;
 end if ;
else
 if v_ena='1' and voltage> - 131072 then
 voltage<=voltage - 1;
 end if ;
end if ;

As already stated, the counter will tend to zero when the differential voltage is 0V and it

will tend to a positive value when the density of '1's is higher than the density of '0's.

18

To check the behavior of this drift in VHDL, a series of measures were conducted.:

Figure 22: Drift vs Sense-time

The graph above shows that the drift has linear behavior depending on the sense time and

therefore it can be compensated at the end of every sense phase, regardless of what time it

has (remember the sense phase is a constant parameter in the CSL operation).

It is also interesting to calculate the voltage difference that is producing the drift. If we pick

for example a sense time of 68ms the value of the counter is -689. This means that there

were 689 more '0's than '1's received. The total number of bits sent in 68ms with a 10Mhz

clock is 680000. The problem is then reduced to a simple linear system with two equations:

 ὼ+ ώ= 680000
ὼ ώ= 689

ὼ: quantity of '0's

ώ: quantity of '1's

The solution to ώ is ώ= 339655.5, therefore the percentage of '1's is

339655.5/ 680000 49.9493%

Because the behavior is linear, the differential voltage that causes the drift can be

represented with a linear form equation:

ώ= άὼ+ ὲ

Being ά the slope of the curve and ὲ the point at which the line crosses with the y-axis.

y = -10,16x - 9,528
R² = 1

-1200,00

-1000,00

-800,00

-600,00

-400,00

-200,00

0,00

0 20 40 60 80 100 120

C
o

u
n

te
r

va
lu

e

Sense time(ms)

19

Particularizing the equation to this case:

ὠὨὶὭὪὸ=
ὠάὥὼ ὠάὭὲ

ὖ(1ᴂί)άὥὼ ὖ(1ᴂί)άὭὲ
ὖz1ᴂί ὠέ

The ὲ= ὠέ= 426.67άὠ is calculated by a known point and the slope ά.

ὖ(1ᴂί) is the density of '1's between 0 and 1. ὖ(1ᴂί) = 0.499493

ὠὨὶὭὪὸ=
256άὠ 256 άὠ

0.8 0.2
0z.499493 426.67άὠ

ὠὨὶὭὪὸ 436µὠ

This small value is enough to produce a drift in the integrative control of the CSL-

algorithm. If the counter value is not reset over time the differential voltage will tend to

decrement the counter until its negative saturation.

To end this subject, another interesting matter is to figure out the origin of these

-426µV.

20

The answer to this matter can be found in the ǃǑ-Modulator datasheet [4]:

Figure 23: Delta-Sigma datasheet extract

The explanation is that the drift comes from the input offset in the ǃǑ-Modulator, hence

the linearity of the drift (a constant offset produces a linear drift over time).

7. Drift ÃÏÍÐÅÎÓÁÔÉÏÎÓȢ &ÉØÉÎÇ ÔÈÅ ɝɫ-Modulator offset
This chapter contains the designs tried in order to correct the ǃǑ Modulator offset

7.1. Dead Zone
The easiest way to solve the problem with the ǃǑ offset is to introduce a dead zone. The

characteristic curve of a dead zone is as follows:

Figure 24: Dead zone characteristic curve

The graphic shows that no output will be produced for certain small values.

Applied to the VHDL sensorimotor loop, this consists of setting a threshold in the

integrative control. The algorithm checks the value of the integral after finishing a sense

phase. In this case, the offset is negative. If the integral value is below the threshold

21

imposed by the dead zone, the control will jump to the drive phase with the timer set to '0'

and there will be no driving motion. Introducing a dead zone on the system has an

important disadvantage. It will cause the integral value to be close to the threshold value

when no external forces are applied. In the case a force were applied, the algorithm would

react faster to one direction more than the other. This is because in order to drive (in this

case counterclockwise) the integral value needs to rise from the threshold up to the energy

threshold set up by Prof. Dr. Hild in [1], therefore sensitiveness is lower on this direction.

Additionally, it's a good choice to reset the integral variable. This way the motor will be as

sensitive in both directions. Another matter is that the drift is going to happen only in one

direction so the best option is to apply an asymmetric dead zone, in this case that means to

displace the characteristic curve to the negative side, as seen on the figure:

Figure 25: Asymmetrical Dead Zone characteristic curve

The reason for this, it's that there is no interest in having a dead zone for the positive

values because the offset is always going to be, in this case, negative. This way, It's achieved

at least the best possible response in one of the two directions of the motor.

22

7.2. Linear compensation
Being proved in the 6th chapter, that the drift is linear on a time basis, it can be corrected

by capturing the offset for a certain sense time and then apply basic geometry (Thales

theorem) to calculate the compensation needed to correct the drift for any sense time:

Figure 26: Compensation triangle

ὕὪὪίὩὸὸ1
ὸ1

=
ὕὪὪίὩὸὸ2
ὸ2

ὕὪὪίὩὸὸ1 Ͻὸ2 = ὕὪὪίὩὸὸ2 Ͻὸ1

In VHDL:

Compensatio n_27<=std_logic_vector ((Offsetcapture*
(signed ("0"&tsense)+1))/(signed ("0"&captureTime)/9999));
Offsetcompensation <= Compensation_27(17 downto 0);

Where Offsetcapture and captureTime are ὕὪὪίὩὸὸ1 and ὸ1 respectively and

Offsetcompensatio n and tsense are ὕὪὪίὩὸὸ2 and ὸ2.

Compensation _27 is just an auxiliary variable to deal with the operation without

overflowing.

The advantage of this method against the dead zone is that sensitiveness of the CSL is the

same for both directions. The algorithm has the same response on the motor no matter the

value of the voltage.

A last thing to point out is the error in the calculation of the compensation. In practice, this

translates into not fixing completely the drift on the measure.

23

7.3. Measures module. Finite State Machine
There's a more stylish solution to fix finally and for all the drift caused by the offset of the

ǃǑ-Modulator. The "measures.vhd" module can be modified to capture the offset for a

certain sense time and then subtract the offset value every time a sense phase ends. That

way, when the drive phase starts, the voltage will be already compensated.

As said before, the CSL algorithm [1] is based on an integrative control. The integration is

never reset on a time basis. That means the drift caused by the ǃǑ Modulator offset can

only be compensated once a sense phase is finished. A good way to overcome this problem

would be building the integral through the addition of average voltages.

Figure 27: Measure sampling

The average voltage is a representative value of the back EMF measured during a time

window (sampling time). The integral4 is built by the contribution of all previous voltages.

The advantage of this method is that it's possible to compensate the offset before the

integral is obtained and therefore the algorithm will work with an already adequate measure

without drift.

Once this is understood, fixing the offset in VHDL becomes a trivial problem. A Finite

State Machine (FSM) with two states can (1st) capture the offset. This is just a normal

voltage capture when no external forces are applied to the motor. And (2nd) obtain the

voltage value, depending on the sense time.

4 Of course writing about "real integral" is not an accurate term, considering that the analogical differential
voltage is being sampled with a 10MHz clock. From now on, the reader should understand this term as an
abbreviation of the correct one.

24

The next figure shows the FSM flow diagram:

Figure 28: Measure FSM flow diagram

This flow diagram is a simplified version of the FSM implemented in VHDL. First,

pressing the switch "SW0" of the ZYBO produces an asynchronized reset "aRST" which

resets the registers and sets the FSM into "INI" state. Every rising edge of the clock, the

condition "timer=measureTime" is checked, while the algorithm is gathering the bits from

the ǃǑ Modulator and accumulating the voltage signal. If the condition is true, the timer

and voltage registers are reset and the offset captured. Then the FSM jumps to "RDY"

state. Once again, the condition is checked every rising edge of the clock. If the condition

is satisfied, the output voltage "voltage_reg" gets compensated with the offset and the

integral is build adding the current voltage to the accumulation of the previous ones.

25

In order to work properly, it's important to add some additional conditions not included in

the diagram to prevent overflows in the values of "integral" and "voltage" before the '+'

and '-' operations:

i f ((voltage(17)&voltage) - (offset(17)&offset)<131071)
and ((voltage(17)&voltage) - (offset(17)&offset)> - 131072) then
 voltage_reg<=voltage - offset;
end if ;

and also:

if ((integral(17)&integral)+(voltage_reg(17)&voltage_reg)<131071)
and ((integral(17)&integral)+(voltage_reg(17)&voltage_reg)> - 131072)
and (voltage_reg>4 or voltage_reg< - 4) then
 integral<=integral+voltage_reg;
end if ;

This guarantees that "voltage_reg" or "integral" are not overflowed. Because both are

signed variables, a way to achieve it, is to concatenate the MSB to the whole value and

increment the range as it would be done in a Two's Complement number. If the value is

not between the range of a signed 18 bit variable [-131072, 131071] the operation doesn't

take place (it does computationally, but the result is not saved into the variable register).

Additionally, a small dead zone in "voltage_reg" (between 4 and -4 units per sense phase) is

added in order to improve the correction. This fixes the small fluctuations produced in the

representative voltage and stops completely the measure drift.

26

8. Common modules description
This chapter covers a brief description of the modules that are common to this thesis and

the other two theses mentioned in the abstract.

8.1. Clock sources
They constitute the clock input signals for all the different sequential elements in the

system.

8.1.1. ClockTree.vhd (Inherited)

Generates and outputs different clocks from the 125MHz oscillator. These are required to

be routed in dedicated tracks to prevent

skew.

Inputs:

Clk_125MHz: source from external

oscillator

Outputs:

Clk_75MHz: clock input for the VGA

Clk_12_288MHz: not used

Clk_3_072MHz: not used

Clk_500kHz: not used

Clk_250kHz: clock input for the MIDI

interface

Clk_48kHz: not used

Figure 29: ClockTree module interface

27

8.2. Visual modules
In order to visualize pertinent data, some modules were added to the project. These VHDL

modules define shapes and numbers for a 1024x768 VGA standard. Some of the modules

were previously made to this project while the others were made to extend this tool.

8.2.1. VGA1024.vhd (BP5)

Generates the pertinent synchronization signals to display data on a VGA with 1024x768/

70Hz resolution points and 16bits pixel color.

Inputs:

Clk_75MHz: clock input for the VGA

VGA_Color[15..0]: inputs the color of the

actual pixel.

VGA_BackColor[15..0]: inputs the color

for the background.

Outputs:

VGA_Addr [21..0]: vectors the position in

the screen for the pixel.

VGA_R [4..0]: depth for the red color

VGA_G [5..0]: depth for the green color

VGA_B [4..0]: depth for the blue color

VGA_HS: synchronization signal that moves the pixel to one position right.

VGA_VS: synchronization signal that moves the pixel to one position down.

5 implemented by Benjamin Panreck

Figure 30: VGA1024 module interface

28

8.2.2. GridPaper.vhd (Inherited)

Displays a grid for the VGA. It prints

the current pixel of the grid with the

background color when no other

module outputs a pixel.

Inputs:

VGA_Addr[21..0]: vectors the position

in the screen for a pixel.

Outputs:

VGA_BackColor[15..0]: outputs the

color for the background.

8.2.3. ASCII_canvas.vhd (PdMN6)

Groups together characters in ASCII. Displays text information on the VGA screen.

Inputs:

VGA_Addr[21..0]: vectors the position

in the screen for a pixel.

push_vga: writes "PUSH" on the screen

when the logic level is '1'.

Outputs:

Color_out [15..0]: indicates the color of

the actual pixel to print.

6 implemented by Pablo de Miguel Nogales

Figure 31: GridPaper module interface

Figure 32: ASCII_canvas module interface

29

8.2.4. ASCII_sign.vhd (PdMN)

Contains the data on how to print

ASCII characters on the screen.

Inputs:

VGA_Addr[21..0]: vectors the position

in the screen for a pixel.

ASCII [6..0]: indicates the ASCII

character to print on the screen

Outputs:

Pixel: sets a high-level logic value when part of an ASCII character is supposed to be

printed on the actual position.

8.2.5. WriteBCD.vhd (PdMN)

Converts a binary number to BCD using the double-dabble algorithm.

Inputs:

BIN_in [18..0]: a 19 bit number in

binary

VGA_Addr[21..0]: vectors the position

in the screen for a pixel.

Outputs:

Color_out [15..0]: outputs the color of the BCD number.

8.2.6. Hex-Sign.vhd (Inherited)

Contains the information on how to print a hexadecimal number on the VGA

Inputs:

VGA_Addr[21..0]: vectors the position in

the screen for a pixel.

Value [3..0]: indicates the hexadecimal

number (0 to F)

Figure 33: WriteBCD module interface

Figure 34: Hex_sign module interface

Figure 35: ASCII_sign module interface

30

Outputs:

Pixel: Pixel: sets a high-level logic value when part of a hexadecimal number is supposed to

be printed on the actual position.

8.2.7. WriteSigned.vhd (PdMN)

Converts an 18bit number to a signed decimal value with 6 digits for displaying it on the

screen.

Inputs:

BIN_in [17..0]: binary number interpreted

in Two's complement.

 VGA_Addr[21..0]: vectors the position in

the screen for a pixel.

Outputs:

Color_out [15..0]: outputs the color of the 6 digit decimal number.

8.2.8. ShowScope.vhd (Inherited)

Draws a time graph on the screen based on a 7 bit value.

Inputs:

VGA_Addr[21..0]: vectors the position

in the screen for a pixel.

Value [6..0]: 7 bit binary value to show

on a graph

Outputs:

VGA_Color [15..0]: outputs the color of

the graph.

Figure 36: WriteSigned module interface

Figure 37: ShowScope module interface

31

8.2.9. ShowVBar.vhd (Inherited)

Draws a vertical bar on the screen with

its size depending on a 7-bit value.

Inputs:

VGA_Addr[21..0]: vectors the position

in the screen for a pixel.

Value [6..0]: 7 bit binary value that sets

the size of the bar.

Outputs:

VGA_Color [15..0]: outputs the color of the bar.

8.3. MIDI data acquisition
These modules define all the necessary tools to obtain configuration parameters from the

user via MIDI, in this case the keyboard faders.

8.3.1. GetMIDI.vhd (Inherited)

Defines the MIDI standard to receive

messages, in this case, the keyboard.

Inputs:

ClkMIDI: MIDI clock input. Must be

500KHz

MidiIn: input for the MIDI data

received.

Outputs:

MidiByte: received message converted to 8-bit binary.

MidiReady: sets a high-level logic value when the reception is finished.

Figure 38: ShowVBar module interface

Figure 39: GetMIDI module interface

32

8.3.2. faders.vhd (PLG7)

Implements the keyboard's faders

Inputs:

midibyte [7..0]: received MIDI message

converted to 8-bit binary.

midiready: indicates that reception is

finished

Outputs:

fader1-9: outputs values between 0 and

127 from the faders.

7 Pablo Lezcano Giménez. A full description of this module is explained the next chapter.

Figure 40: faders module interface

33

9. Faders module. Keyboard's battery of faders.
In order to introduce any kind of parameters in real time, it's very useful to have the whole

fader battery of the keyboard implemented in a module. Each fader can be identified with

an specific 8 bit hexadecimal address. Although the module is configured by default for a

miditech i2-Control keyboard, it can work for any other MIDI keyboard if the addresses are

known.

Figure 41: faders addresses of the MIDI keyboard

In VHDL, the address is set by default by the use of "generic" syntax:

Generic (-- default adre sses for the faders in a miditech i2 control -
37 keyboard
 fa1: std_logic_vector (7 downto 0):=x" 4A";
 fa2: std_logic_vector (7 downto 0):=x" 47";

...........etc.............

That way, if the keyboard changes, there's no need in internally modifying the file. The new

addresses can be set at the module definition using "generic map" syntax:

f aderControl: entity work.faders
generic map (add1, add2, add3, add4, add5, add6, add7, add8, add9)
port map (MidiByte, MidiReady, fader9, fader10, fader11, fader1 2,
fader13, fader14, fader15, fader16, fader17);

Where "addX" is the 8-bit hexadecimal address of each fader.

34

The FSM is as follows:

Figure 42: fader battery FSM

First, the FSM checks if there's a change event in the faders ("midibyte = 0xB0"). If the

condition is true, it means that the message is in fact a "Control Change" message [7] and

the FSM can jump to the next state "01". Then the algorithm waits for the next byte, in

other words, until the byte has changed. The MIDI standard compels to have a '0' in its

MSB for the first data byte [7]. If both of them are correct, the FSM can spot which fader

was moved by the address and jump to state "11". Finally is checked once again the MSB

of the byte [7] and if everything is correct the FSM acquires the value between 0 and 127

from the fader (the MSB is always '0'[7]) and jumps back to "01".

In VHDL, the FSM reads as follows:

wait until rising_edge (MidiReady);
 case state is
 when " 00"=> -- waiting for controller message (hex value "B0")
 if midibyte = x" B0" then
 state <=" 01";
 end if ;
 when " 01"=>
 if midibyte(7) then
 if midibyte /= x" B0" then
 state<=" 00";
 end if ;

35

 else
 ctrlnr<=midibyte(6 downto 0);
 state<= " 11";
 end if ;
 when " 11"=> -- waiting for controller value
 if midibyte(7) then -- command byte
 if midibyte = 8x" B0" then
 state <= " 01";
 else
 state <= " 00";
 end if ;
 else
 case ctrlnr is -- choosing fader
 when fa1=>
 fader1<=midibyte(6 downto 0);
 when fa2=>
 fader2<=midibyte(6 downto 0);
 when fa3=>
 fader3<=midibyte(6 downto 0);
 when fa4=>
 fader4<=midi byte(6 downto 0);
 when fa5=>
 fader5<=midibyte(6 downto 0);
 when fa6=>
 fader6<=midibyte(6 downto 0);
 when fa7=>
 fader7<=midibyte(6 downto 0);
 when fa8=>
 fader8<=midibyte(6 downto 0);
 when ot hers =>
 fader9<=midibyte(6 downto 0);
 end case ;
 state <= " 01";
 end if ;
 when others =>
 state<=" 00";
 end case ;
 end process ;

Let's analyze the process step by step:

wait until rising_edge (MidiReady);
 case state is
 when " 00"=> -- waiting for controller message (hex value "B0")
 if midibyte = x" B0" then
 state <=" 01";
 end if ;

The process is invoked only when a rising edge of the signal "MidiReady" occurs. The first

state "00" waits for the first byte to indicate a "Control Change" event ("midibyte = 0xB0")

[7]. If that happens, the FSM will jump to the state "01".

36

when " 01"=>
 if midibyte(7) then
 if midibyte /= x" B0" then
 state<=" 00";
 end if ;
 else
 ctrlnr<=midibyte(6 downto 0);
 state<=" 11";
 end if ;

The FSM gets ready for the second byte. The standard compels the MSB of the byte

"midibyte(7)" to be '0' [7]. If the condition is not satisfied, the FSM will jump to the initial

state "00" or stay at "01" if the byte is considered again as an status byte with a control

event. If none of this happened, the byte correctly indicates the address of the

corresponding fader and the FSM can jump to the last state.

when " 11"=> -- waiting for contr oller value
 if midibyte(7) then -- command byte
 if midibyte = 8x" B0" then
 state <= " 01";
 else
 state <= " 00";
 end if ;
 else
 case ctrlnr is -- choosing fader
 when fa1=>
 fader1<=midibyte(6 downto 0);
 when fa2=>
 fader2<=midibyte(6 downto 0);
 etc
 when others =>
 fader9<=midibyte(6 downto 0);
 end case ;
 state <= " 01";
 end if ;
 when others =>
 state<=" 00";
 end case ;
 end process ;

The "11" state also checks the MSB of "midibyte" as required by the standard [7]. Then the

first data byte (ctrlnr) is compared with the addresses of the faders which are either

generically stored or specified in the module definition. When the fader address matches

the one captured in "ctrlnr", the second data byte gets registered in its respective variable

"faderX".

37

 There's also one last thing to point out at the end of the code:

when others =>
 state<=" 00";
The reason for this is simple. In the absence of an asynchronous reset, the FSM could start

in a unknown state. This forces it to jump to "00" and wait for the bytes to arrive.

10. Systems based on parameterized thresholds

10.1. System overview
As the name indicates, these models are all based on setting up a threshold that, when it's

surpassed, will stop the normal operation of the sensorimotor loop. This is achieved using

a module that receives the voltage together with the threshold parameter and decides if a

push happened. If a push occurs, an output signal will be generated. The "ignore" signal is

checked in the sense phase of the CSL algorithm. If the signal has high-level logic value,

the driving phase will be skipped.

Figure 43: Parameterized thresholds simplified diagram

Where "mdat" and "ignore" are binary signals, "voltage" and "Threshold parameter" are 18

bit bus type signals.

Working with an external module to detect the pushes allows to implement the full

behavior without needing to change the control module where the sensorimotor algorithm

is executed and therefore no major changes are produced in the module.

