BEUTH HOCHSCHULE FUR TECHNIK BERLIN

m University of Applied Sciences

Development of a Sensorimotor Algorithm
Able to Deal with Unforeseen Pushes and It
Implementation Based on VHDL

Bachelor Thesis

PabloGabri¢ Lezcano Giménez

Matrikelnummer: 821978
SS 2015

Betreuer BHT: Prof. Dr. Hild
Gutachter: Prof.Kersten
Beginn Datum: 03. August 2015
Ende Datum: 03.November 2015
Abgabe Datum:02. September 2015



Acknowledgements
I would like to express my gratefulness to Prof. Dr. Hild for giving me the opportunity to
do my Bachelor thesis in the robefield.

My special thanks to Benjamin Panreck, my colleague and constant supervisor, for his
patience guidance, encouragement and useful suggestions on my research work.

To my colleague Pablo de Miguel, who became a good friend during my yeaaind Berlin
contributed with great effort with many coom features to both our theses.

| would also wish to thank Marcus Janz and Christian Thiele for their great assistance in
some difficulties | encountered during my work.

To Stefan Bethge, Jorg Meier, PetescHfeld and the rest of the Neurorobotics Research
Laboratory, for making me feel integrated from day one.

To my friends of the Universidad Politécnica de Madrid CésaiSdrattip Fernando,

Andrés, Sergio, Alberto and many others. | am particulsafylgoaget to know each and

every one of you and to spend countless hours both studying and having fun during the
last 3 year3here's not enough moni@ythe world to thank you, so | won't be paying any
rounds.

This thesis is dedicated to my sistermpngarents, who supported me throughout the
whole degree.



Abstract

There's no doubt about the increasing role played by robotics in today's society. We see it
every day applied to the fields of medicine, industry, consumer electronics or even art.
Someof these applications are fundamentally made with the purpose of interacting
between humans and machines. This human machine interaction is one of the countless
parts in the field of robotics that is in continuous development.

"Defying gravity A Minimal Cognitive Sensorimotor Loop Which Makes Robots With
Arbitrary Morphologies Stand Ud] by Prof. Dr. Manfred Hild establishes the point of
departure of this thesis. It defines an electronic circuit and a VHDL algorithm that fights
against varying extat forces without the employment of a sensor (in its most strict
definition). Sometimes the application would require to ignore some of these forces
(pushes) while still considering others (gravitational fol@eyel6pment of a
Sensorimotor Algorithm Ad to Deal with Unforeseen Pushes and Its Implementation
Based on VHDL" is a Bachelor thesis with the object of developing, experimenting and
documenting a Cognitive Sensorimotor Loop (CSL) algoaithento differentiate a
pushing motion from the gravitatal force and decide whether or not to work against it.
This new behavior in the CSL has a whole variety of applieationdvantages as energy
saving osubmission to assistive forces among others. This thesis converse mainly around
two models, one bad on parameterized thresholds and the other one based on a filter,
both of them with their own limitations.

This thesis, elaborated during my ERASKBa8n Berlin, concludes my bachelor studies

in Electronics Engineering at the Universidad Politédmitéadrid and Elektrotechnik/
Mechatronik at the Beuth Hochschule fur Technik Berlin. In it | wrap up, among other
competences, the knowledgacquired in VHDL hardware modeling. This thesis has
some common ground with the bachelor thedf#$iDL-Based Sysin Design of a
Cognitive Sensorimotor Loop (CSL) for Haptic HuManhine Interaction (HMI)by

Pablo de Miguel Nogales and the master thesis "Entwicklung eines Adaptativen
Regelungsmechanismus fir die Bewegungsoptimierung modularer Aktuatoren™ by
Benjamin Panreck.The three theses contain some inherited work regarding data
visualizatioramong other thingsvhile some other modules were written "as a team" to
extend features which are common in the tirdem.



Table of contents

ACKNOWIEAGEMENTS.....cceiiiii et e et e e e emr e e e e e e e e e e e e eeeeens
ADSITACT. ...ttt
1. Personal MOtVALION......ccoouiiiii ittt e e e e e e e eee ] 6
P © 1 o] 1= o1 1NV TIPSR
3. Basics and mathematical foundations...............coovvviiiiiiimiiiiiiiiiieeeeeeeeeeeeeeeee d.
3.1. Infinite Impulse Response (IIR) Filters............cooooiiiiii e 7
3.2, FiXed COMMA dALA LYPL......uuuuuiiiiiiiiiiiiiiiit e e e e e e e e e e e e e e e eeees
4. A quick introduction to Cognitive Sensorimotor Loops (CSLS).................... 11
5. System overview and COMPONENTS.......cooiiiiieiiieiee e 13
6. Voltage integration. Drift in the measure..........ccccvvvieiii e ceceiiee e, 17
7. Driftc2 YLISY & A 2 Y &-Modd@atoEdtfsea....0.K.S....n v, 20
4 T B =T Vo 174 o ] = PP 20
7.2.  Lin€ar COMPENSALION......cciiiiiiiiiiiiiie e e ceriee e e e e e e eer e e e e e e e e e e s 22
7.3. Measures module. Finite State Machine.................oevviiiiiieiiiiiiiiie 23
8.  Common MOAUIES AESCHIPLION........uuuuiriiiiiiiiiiiiiime e e e e e e e e e e e e e e e e e e e e e e e e eneaaes 26
9. Faders module. &yboard's battery of faders.............cci 33
10. Systems based on parameterized threshalds...............cccovevviiieeeeeeiinnnnnn. 37
10.1.  SYSIEM OVEIVIEW....coiiiiiiiiiiieieeeee ettt e 37
10.2. Static threshold MOdel.............ooooiiiiiiiiiiii e 38
10.3. Incremental threshold Model............ooooiiiiiiiiiiii e 40
10.4. VHDL implerantation. push_ignore.Vhd.............cccccoovviiiiiiiimiiiiiiiiiiiiiiiie 41
10.5. VHDL implementation. Control.vhd................ooooiiiiiiiieeeees 43
10.6. Resources and power CONSUMPLIQLL............uieieeeeiiiiiiiimeeeeeeeeiin e e e e e eeesveaane 49
0 R O 11 1 0T 50
11. System based on a push bypassing filter..............ccoooiiiiiiciie e 51
R O V£ = ¢ 01 V= 51
11.2. VHDL Implementation. measuresS.Vhd................uuuuuuiiiiiimnneineieeeeeeeeeeeeeeeeeeen 51
11.3. Resources and power CONSUMPLIQI.........coeriiiiiriiieii i eeenaes 53
5 11 1 oo | 55



ANNEXE 2: Video description. System based on a push bypassing.filter.......... 57
BIDIOGIaPNY ... 57
Statement Of AULOISHIP. ......oiiiiiiiieieeee e 58

Table of figures

Figure 1: IR discret@me low-pass filter eXxample..........cccvviieiiiie e 7
Figure 2: INtegral filEErING.......coiiiiii et s e e e e e 8
Figure 3: righishift operation of a 4 bits two's complement NUMDbBEL.........ccccoooviiiiiiiiieeece e 9
Figure 4: System overview used by Prof. Dr. Hild in [1]. (fijperted from [1])......ccccoovvieeniiinenenn. 11
Figure 5: Pulse Width Modulation @Xample..........ccuiiiiiiiiieecc e 12
Figure 6: CONNECTION OVEIVIEM . ...... .uuiiiiiiiiiiit e e ettt ettt ettt e s et bt e e s st e e e s s abb e e e e e e anbreeeeeneee 13
10 UL (I A 4 = 1@ N o o = o R 14
FIgUIE 8: CSL PMOM......eiiiiiiiiiiee ettt e et e e e e anre e 14
FIgure 9: MIDI PMQQ.........cooii e e e e e e e et et e et e e b e s e s e e e eeeaaaaaaaaaeeeeeeenn 14
Figure 10: MIDI KEYDOAIM. ......cuvviiiiiiiiiie ettt e e et e e e e b e e e e 14
1o UL I Y € o 11 - VS 15
FIGUIE L12: DC MOTOL....ceiiiiiiieie ittt e e ettt ettt e e e sttt e e ekt b et e e s bbb e et e s aanbbb e e e e s nbbe e e e s annnneeee s 15
FIgure 13: MOUNTING SUMACE .. .uuuueieie e i e e ettt s e e e e e e e e e e e e e e et e e e e e e e aearar s 15
FIGUIE L14: POWET SUPPIY. cee ettt ettt ettt et e e et e e e e e e e e e anabr e e e e e nanreas 15
FIQUIE 15: MO0 SITUCTUIE......eieeeeeietiitt e e e e e e e e e e e e e e et e et e e s s s e s e s e e e e e eaaaeeeeeeeeesnssenrnnns 15
FIGUIE 16: MIDI CADIE.......eeiiiiiiiiiee ettt ettt e e st e e e e s bt e e e s sabeeeeeeanees 16
FIQUIE 17: VGA CADIE.....ce it e e e e ettt e e e e e e e as 16
Figure 18: Danana Cable...........coooiiiiiiiiiii e 16
FIQUIE 19: USB CADIE..... .ottt e ettt s e s e e e e e e e aaaaaaaaeeaeaeenes 16
(o UL =0 =T o] (o o PSP T P PPOTPRTP 16
Figure 21Differential Voltagebit density of DelteSigma modulatar................cccccviiiieeeiiiieeeeeeeeen, 17
FIgUre 22: DIt VS SEIHENE.....coi ittt et e e s e e e e sabaeeeas 18
Figure 23: DeltéBigma dataSh@EEXITACL.............evviiiiiiiiiceei e 20
Figure 24: Dead zone CharaCteriStiC CUIVE. ........ciiuuiiiiiiiiiieie ettt e e 20
Figure 25: Asymmetrical Dead Zone characteriStiC CUIVE..........uuueiiiiiieeee e 21
Figure 26: Compensation tHANGIE. ........uuiiii i e e 22
Figure 27: Measure SAMPIING .........uuuururiiiiiaeae e e e e e e e e e eeeeeeetee e e eeeeaaeaaat e saaesaaaaeeaaeeseeesesssennnns 23
Figure 28Measure FSM flOW didgram.........cuuviiiiiiiiiii et e e 24
Figure 29: faders addresses of the MIDI keyboard.................ooovveiiiiiiiiiiii e, 33
Figure 30: fader DAttery FSM.......oouiiiiiii e 34
Figure 31: Parameterized thresholds SyStem OVEIVIEW.............oevvvuiiiiuiiiiiiie e eeeee e, 37
Figure 32: Push detection with static threshold.............ccccviiiii i 38
Figure 33: False push detection with static threshald...............ccoueei e 39
Figure 34: Missed push with static thresShold.............oouiiiiii s 39
Figure 35: push detection with incremental threshold..............ccccooiiiii 40
Figure 36: Control FSM flow diagram.............ccoeiiiiiiiiiiiiiiiee e e s sevneeeee A4
Figure 37: Thresholds systeasources CONSUMPLION OVEIVIEW. .........ccuuuvrriieiieiaaaeeeeeeeeiiiiieeeeaeaenes 49
Figure 38: Thresholds system resources (extended).........ccoouuiiiiiiiiiiiieiiiie e 50
Figure 39: Thresholds system power CONSIMNA. ..........uuiiiiiiiiieiaiiaiiiiiiie e e e e beeeeeeeaaaee s 50
Figure 40: Push bypassing filter SyStem OVEIVIBM . ..........ciiiiiiiiiiiiiiiie e 51
Figure 41: Filter SYStem re@SOUICES OVEIVIBW..........uuuuiiiiiiiieeeaeee e e e e sttt eeeeaeeeaaee s s s aanbnbeeaeeeeaaaeans 53

5


file:///C:\Users\blapo_000\Desktop\Docu\BachelorThesis_LezcanoPablo.docx%23_Toc428801165
file:///C:\Users\blapo_000\Desktop\Docu\BachelorThesis_LezcanoPablo.docx%23_Toc428801166
file:///C:\Users\blapo_000\Desktop\Docu\BachelorThesis_LezcanoPablo.docx%23_Toc428801167
file:///C:\Users\blapo_000\Desktop\Docu\BachelorThesis_LezcanoPablo.docx%23_Toc428801168
file:///C:\Users\blapo_000\Desktop\Docu\BachelorThesis_LezcanoPablo.docx%23_Toc428801169
file:///C:\Users\blapo_000\Desktop\Docu\BachelorThesis_LezcanoPablo.docx%23_Toc428801170
file:///C:\Users\blapo_000\Desktop\Docu\BachelorThesis_LezcanoPablo.docx%23_Toc428801171
file:///C:\Users\blapo_000\Desktop\Docu\BachelorThesis_LezcanoPablo.docx%23_Toc428801172
file:///C:\Users\blapo_000\Desktop\Docu\BachelorThesis_LezcanoPablo.docx%23_Toc428801173
file:///C:\Users\blapo_000\Desktop\Docu\BachelorThesis_LezcanoPablo.docx%23_Toc428801174
file:///C:\Users\blapo_000\Desktop\Docu\BachelorThesis_LezcanoPablo.docx%23_Toc428801175
file:///C:\Users\blapo_000\Desktop\Docu\BachelorThesis_LezcanoPablo.docx%23_Toc428801176
file:///C:\Users\blapo_000\Desktop\Docu\BachelorThesis_LezcanoPablo.docx%23_Toc428801177
file:///C:\Users\blapo_000\Desktop\Docu\BachelorThesis_LezcanoPablo.docx%23_Toc428801178

Figure 42: Filter system resources (eXteNded).........cccuuriiiiiiieeiiee e e e 54
Figure 43: Filter system power CONSUMPLION. .........eeiiiiiiiiee ettt e et e e e e e 55

1. Personal motivation

Snce | wasvery young science fictioalwayscaughtmy eyeAs a kid alktartedwith
spaceship toyandfilms, as usualOne of these filmsitroduced me tshort stories and
novels byH.G. WellsAldous Huxley, Isaac Asimd@veorge Orweletc

To me,robotics is raking science fiction realat least getting as close as pos#iltihat
sounddoo corny to som&Vhen the time came to choose a field of research for my thesis,
robotics seemdike the bestchoicelt has also a lot of professional ogpnities inthe

fields of biomedical engineering, itigusonsumer electroni@jtomation etc.

Once | was introduced to the Neurorobotics Research Laboratory (NRL) team, | noticed
thatlt wasn't the average workplaee team comprehendsgrees inatnputer science,
mechatronics,industrial engineering, physics, mathematics, economics and psychology
eachand every one of theplaying a role to develop Myon, a humanoid autonomous
robot. Working tlke last months in the NRhas challenged my knowledgeboth
electronics and VHDL hardware modeling. The second has been particularly challenging,
since | am noespeciallyjond of programming. Nevertheless, It felt really motivating to
research on something that could be appligee futureto anything mut more complex
e.g.Myonandin the event of not having satisfying resudip the next researchetearn

from my mistakes.

"Sciendeesn't purvey absolute truth. Science islisaestagrigitnying to improve your
knowledge of nature. It's a system for testing your thoughts against the universe and seeing wl
match. And this works, not just for the ordinary aspects of scietice, but for all of life

- Isaac Asimov


https://en.wikiquote.org/wiki/Science

2. Objectives

The objective of this thesis is to documenéegperiments and ovenalbrk done orpush
ignoring contractivesensorimotor algorithmmsneaningsensorimotoralgorithmsthat
ignore large magnitude for¢esmpared to gravjtapplied in a short timatervalon a
pendulum systenhis main objective is divided in two-shfectives:

1 Developing aystem based on parameterized thresholds
1 Developing aystem based on a push bypassing filter

3. Basics and mathematical foundations

Before going any furthehere are some fundaments that need to be addressed. These
fundaments, which are needed for the system based on a push bypassing filter,
comprehend digital signal procesg$D8P) representations in binary numbers igd
mathematical explanations.

3.1.Infini te Impulse Response (IIR) Filters
As the name indicates, IIR filters havargulse response that continues indefinasly
opposed to finite impulse response (FIR) filters. The reastimerto choose IIR or FIR
filtersdepends on theharacteristiodesiredfor the application. For example, FIR filters
can have a generalized linear phase but they cannot be describedfosntiegedtions,
while IIR filterscan. [2]

Since the main desia@ this system is to reduce complexity, the right chozeise an
IIR discretdimefilter:

x[n]
y[n]

n
(Sample number)

Figure 1 IIR discrete-time low-pass filter example

Whereuoi€] and «j €] are the input and output samples at the present moment respectively.
A delayed sample (in a past moment) would besesped byjé 0] orofe 0]
wherel is the sample delay.



The graph shows a filter example withgass response, which can be observed by the
spikesattheaj¢] signal disappeariagithecj€] signal. In other words, the fast variations
of thesignal within a time period (high frequenaiesgut, hence the lgass response.

Another thing that can be seen in the graph is the delay introduced by the filter. The blue
signal is displaced at the right of the red one. Depending on the systethisp=ed,
become a major issue as will be seen funttirex 11th chapter.

Now that the IIR filterdiave been briefiptroduced, we can focus in the oeguiredto
achieve the push bypassirige desired behavior for the IIR filter is as follows:

Input
Output

Time
Figure 2: Integral filtering

This means that the system needs to cut the high frequencies until the abrupt
increaséslecreases are smoothened. In other words, a low pass filter is required. This can
be done analogically with activpassive RC filters or digitally with the FPGA resources.
Since DSP is already a huge subject, this document only will focus in a solution-with a low
pass digital 1st order IIR fiftEr

e R R L
w¢ : filter input
w¢ : filter output
we 1 :previous filter output (1 period delay)
Gy, Gy, 6 - filter coefficients

One major concern is to calculate the filter coefficients. Since thef¢hgtpusks are

not really specified, & hecessary that the cutoff frequency of the filter can be changed
during the experiments (e.g. via keyboard faders) in order to tune it in real time. Hence a
further simplification was applied to the filidmat way, there's not an actual coefficient
calculation



WE = OWE +(1 we 1
Wherewis a coefficient betwe8randl.

There are a few things in terms of computational performance that are interesting to take
note. Considering that a multiplication is a very expensive operation in terms of,resource
a good alternative is using shift operators. Given coefficients betamdh, the
operation needed is right shifting. Right shifts are then reduced 26 dieigions, being

¢ the number of shifts%(: 0.5, 2i2 = 0.25, 2% = 0.125 and so on).

The use of shift operators brings up another topic regarding data types. The "integral”
variable is type signed, meanihgt the 18 bit variable is @&ots complement
representation. It's important to make sure that shifting right prodraresca number.

Let's do a simplified explanation based on 4 bit numbers

Bit Bit
Number |32 |1| 0 Number | 3|2 |1| 0
-8 1{0|0| 0 4 0/1/0]0
-4 111/0]| 0 2 0/0(1]0
2 111|1]|0 1 0/0(0]1

Figure 3: right-shift operation of a 4 bits tw's complement number

A quick view of the tables shows that a correct shift in two's complepresentation

must introduce into the MSB position the previous MSB value. From another point of
view, a two's complement number can be increased in ramget @ianging the value)

just adding '1's at the left if the number is negative and '0's if the number is positive:

01005¢ = 08 0000 01004

1011gy = 18 1111 1011gy

In VHDL, this problem is automatically solved by usinglBtE.NUMERIC STD"
package, which supports shift operations for signed numbers.

3.2.Fixed comma data type
As seen in theubchapter aboyéhe filter uses decimal coefficients between 0 and 1. This
characteristis mandatory or the filter won't work properlyerefore, igenerates a need
of a number representation with decimals for VHDL. For this matter, there are two
options available.

First option would be to download an extended package that supports fixed or floating
comma data types. Learning syntax rules for custom packages takes time and even after

14 bit numbersan represent from 0 to Ifbnormal binary and fror8 to 7 in two's complement.

9



that there can be some unsolvable synthesis problems with the developingssaiéware
the package is not officidhat leing said, it's highly recommended to g@ &econd
option.

The second option consists on making a few operations to customize the signed data type
and use it like a fixed comma data type. Let's go back to 4b@rsfon the explanation,
e.g. number in decimahotation

011159 = 22+ 214 20=4+2+1= 7005

If we add negative powers at the right of the zero power, where the comma would be
located, we can obtairkind offixed comma representation.

0100 . Ol1le = 2242242342424+ 2414 1o
' o0 278" 16

=4+ 025+ 0125+ 0.0625 = 4.4375¢g

Now it's possible to hagedecimals after the comma, being the resolution of the part after
the comm%l; :

10



4. A quick introduction to Cognitive Sensorimotor Loops (CSLSs)

The originalCSLused in [1py Pof. Dr. Hildis based on an electronic circuit with two
main parts: a 1 bit dekgma !(( Q modulator and a 4dridge driver connected to a
Complex Programmable Logic Device (CPLD).

+ -
:;.1
H-bridge Ma Mot
Si9986 ot
o, Mg
: -
o' L
ADC
AMC1203
A B Clk" Dat
CPLD
Coolrunner-l|

Figure 4: Systemoverviewused by Prof. Dr. Hid in [1]. (figure imported from [1])

The! Qmodulator (AMC1203) works asamalogo-digital converter (ADC)[5]. It is used

to measure the back electromotive fqtk EMF) in the terminals of a DC moidre

back EMF is a force that opposes to tleetec current that induced it, as described in
Faraday's law of induction and Lenz's law. In DC motors, this back EMF is proportional to
the speed of rotation and therefore it can be used to infer the spinning speed. Applying a
voltage in the terminal§ @ DC motor will produce the motor to start spinning anditthus

will create a back EMF, which can be measured as a voltage with the opposite direction to
the voltage applied. If the source that applies the voltage is disconnected and connect a
multimeter to those same terminals, the multimeter will medbkerea voltage
proportional to the back EMF and therefore the rotation spédue inferredWith this

principle, the CSL operates first measuring the back EMF and then driving in relation to
the magitude of the forcen such avaythat the DC motoserves both as an actuator and
sensdl] and it will fight against the forces applied such as gravity or external pushes.

The Hbridgedriver is entrusted to give the motor a particular power to vathta

certain speed. This-Ibfidge topology allows to run the DC motor in both directions
among two other features: brake and coast. Braking the motor happens when the driver
outputs a lowevel logic value to both termsidh other words, the terminalse short

circuited and the motor will eventually stop. To coast the motor, the driver outputs a high
impedance (M) logic level, which is in practice an open circuit. The behavior of the
motor will then be as nothing is connected to its terminals.

2 Sometimes also addressed as ceeletetromotive force (counter EMF).

11



The driver can be powered with a single unipolar positive voltage for both driving
directionswhich is a major advantagee CSL algorithm drives the motor by using the
Pulse Width Modulation (PWM) technique. This means that the power that receives the
motar depends on the duration of the pulses of an square signal:

Voltage
25% DTC 50% DTC 75% DTC 100% DTC
V+ =
Gnd time
T T T T

Figure 5: Pulse Width Modulation example

The above figure shows different duty cycles (DTCH8)da@quare signal with periad

The higher the magnitude in the force applied to the motor, the higher the DTC on the
PWM signal applied by thebfdge drivemwill beand therefore the faster the rotation
speed of the motor will be.

The CPLD that run the original sensorimotor dhgarin [1] has been substituted in this
system for a Field Programmable Gate Array (FPGA) , which has a vast amount of
resources compared to CPLDs. The late CSLs are based on an electraroncacigt

to a development boawi one of its Pmod input$his board, which has among other
elements the previously mentioR&GA is configured to behave like a certain specific
hardware by the use of the hardware description landdBgé. In [1] the CPLD ram

Finite State Machine (FSM) with two statasesand drive.

In the sense phase, the@Modulator measures the back EMF and transmits a binary
signal to th&€PLD orFPGA.This sense phase, which is constant, lasts 10ms. In order to
have a correct back EMF measure, tHwidje must be configured toast position,
otherwise the measure will be compromised when a voltage is applied to the terminals.
The FPGA gathers the data until the sense phase is finished. Then, a transition in the FSM
will happen, entering the drive phie.

In the drive phasén¢ algorithm will decide, depending onbtérek EMFgathered in the
sense phase, whether or not to drive the motor and for howf ltdreback EMF is
positive, it means that the force that produced it was negative. The algorithtimedrives
motor "Forwad" when the back EMF is positive and "Reverse" when it's negative. This

3in this case it's used VHDL. There are other hardware description languages e.whi¢drilwgshe
language used by Prof. Dr. Hild in [1].

12



way the CSL drives the motor opposing to the external forpedtiated it when was

collected in the sense phase. The other isBoe imuchtime in which the drive phase
occurs(since it's not constant as the sense phasather words, the time in which the

motor is being driven. Here is where the PWM takes place. Depending on the magnitude
of the back EMF measured in the previous sense phase, the driving time will lbe lower o
higher, hencend for all practical purpose®VaM. [1][5][6]

These sengdrive transitions are in constant loop during the operattproducing the
desired behavior.

5. System overview and components
This chapter contains a brief description of thaeglts that form the system and the
connections between them.

5.1.Connection overview
The figure below shows how the inputs and outputs of each component are related, as well
as the cables used.

)
+
( \ -\
-
o y iy —
(o] |
<C (1—
It
- 3|
a
=

|

.

Figure 6: Connection overview

Where esry element of the figure above is further described in the nekaptdr

13



5.2.ZYBOZynqg-7000 Development Board
Development board by the manufacturer Xilinx.
where the whole system converges around. I
a 4.400 logic slices FPGA (each slice with fot
Input LUTs and 8 fliglops), PLLs (to create
clock sources), fast block RAM;hlt8 per pixel
VGA port and Pmod connectors, among ot
elementd3], [4]

5.3.Cognitive  Sensorimotor Loop

(CSL) Pmod
Circuitthat combineboth sensor and driver. It'
basedon a HBridge driver and a Deffagma
modulator[1] [5] [

Figure 8: CSL Pmod

5.4.MIDI Pmod
Converts the DINo connector into Pmod
standard. It's used to receive MIDI messages
from the MIDI keyboard.

Figure 9: MIDI Pmod

5.5.miditech i2 -Control 37 keyboard
Keyboard used to transmit MIDlessages via its
analog faders.

Figure 1Q MIDI keyboard

14



5.6.VGA Display
Used to visualize pertinent data. Commet
DELL display where the VGA modules will |
running at 1024x768 resolution and 70
refresh.

5.7.Lego Technic Motor 9 Volts

DC Motor run by the CSL Pmod. Figure 11 VGA display

»

5.8.Mountin g Surface Figure 12 DC motor
estructuralbase for the ZYBO and the motc.
structure.

5.9.ELV DPS5315 DC-Power Supply Figure 13 Mounting surface

Provides DC power to the CSL Pmod a
indirectly the motor.

5.10. Motor structure
Fixes safely the motor against mechanical fc
and torques.

Figure 15 Motor structure

15



5.11. Wiring
Sdf-explanatory.

Figure 18 MIDI cable Figure 17 VGA cable

Figure 19 USB cable Figure 18 banana cable

5.12. PC
Used to run the Xilinx Vivado SW ar
program the ZYBO.

Figure 20 Laptop

16



6. Voltage integration. Drift in the measure
To measure the courdglectromotive force (counter EMF) of the motor, the-E8bd

has an analogiadibital converter based a DeltasSi g ma Mo d-Mddwatod.r (! O

T h i sModuftor generates a flow of bits depending on the differential voltage between
terminals of the motor. Here's an example taken from the dafd$heetxplain its
operation:

Differential Voltage

Percentige of '1's

Percentage of '0's

256mV

80%

20%

oV 50% 50%
-256mV 20% 80%
Figure 21 Differential Voltagebit density of Delta-Sigma modulator
This means that whe n-Mbdulator smouldmutputi58% od'l's r est ,

(highlevel logic values) and '0's {lewel logic values). The problem is that, in practice,
the percentage of '0's is bigger than 50% when the motor is at rest, and the captured value
with VHDL is drifting from the one corresponding to OV.

In VHDL coding, this simplifies in having a counter that is incremented when a '1' is
received and decremented when a '0' is received.

elsif ~mdat="1'then
if v_ena='1l" and voltage<131071 then
voltage<=voltage+1;
end if ;
else
if v_ena="l" and voltage> -131072 then
voltage<=voltage - 1;
end if ;
end if ;

As already statethe counter will tend to zero when the differential voltage is OV and it
will tend to a positive value when the density of '1's is higher than the density of '0's.

17



To check the behavior tfis driftin VHDL, a series of measures were conducted.:

0,00

-200,00

-400,00 \\.\\
-600,00
-800,00 \
y £-10,16x9,528 \\
-1000,00 RZ=1

')

Counter value

-1200,00

0 20 40 60 80 100 120 Sense time(ms)

Figure 22 Drift vs Sensetime

The graph above shows that the drift has linear behavior depending on the sense time and
therefore it can be compensated at the end of exese phase, regardless of what time it
has (remember the sense phase is a constant parameter in the CSL operation).

It is also interesting to calculate the voltage difference that is producing the drift. If we pick
for example a sense time of 68ms #ieevof the counter #689. This means that there

were 689 more '0's than '1's received. The total number of bits sent in 68ms with a 10Mhz
clock is 680000. The problenthisnreduced to a simple linear system with two equations:

w+ W= 680000
®w W= 689

a1 quantity of 'O's
@I quantity of '1's
The solution tavis w= 339655.5, therefore the percentage of '1's is

339655.5/ 680000 49.9493%

Because the behavior is linear, the differential voltage that causes the drift can be
representedvith alinear formequation

W= adw+ &

Beingd the slope of the curve asidhe point at which the line crosses withytaxis.

18



Particularizing the equation to this case

L oG ' ]
W= T aam 0(1%)a©

0 1% @

Thee = @ = 426.674 wis calculatedy a known point and the slajpe
0(1de) is the density of '1's between 0 an{1de) = 0.499493

g = 22000 2680 a0n0s 426674
Wm = 08 02 ' MW

436U

This small vak is enough to produce a drift in the integrative control of the CSL
algorithm. If the counter value is not reset over time the differential voltage will tend to
decrement the counter until its negative saturation.

To end this subject, another interegtiadter is to figure out the origin of these

-426V.

19



The answer to this matter can be found

t -MeduldtoDdatashept]:

ADS1203I
PARAMETER TEST CONDITIONS MIN TYP(1) MAX | UNITS
Resolution 16 Bits
DC Accuracy
+1 +4 LSB
INL Integral linearity error(2)
Tp =-40°C to +85°C +3 LSB
DNL Differential nonlinearity(3) +1 LSB
Vos Input offset(4) +220 +1000 Y
TCVos Input offset dnft +35 +8 | pvrec
REFIO =internal 2.5V +0.2 +14 %
Ggrr Gain error{4)
REFIO =internal 2.5V, Tp = —40°C to +85°C -1 1 %
+30 ppm~C
TCGggr Gain error drift
Tp =-40°C to +85°C +20 ppm/~C
PSRR Power-supply rejection ratio 4.5V < AVpp or Vpp < 5.5V 80 dB
Figure 23 Delta-Sigma datasheet extract
The explanation is that the odulatdr, hencemes f r

the Inearity of the drift (a constant offset produces a tinéawver time).

7. Drift AT 1T DPAT OAOET T O8MoliUla@IE dffget OE A 34
This chapter containstdlee si gns tried in order to correct
7.1.Dead Zone

The easiest way to solve pheblemw i t h
characteristic curve of a dead zors illows:

pffset is tb iDtroduce a dead zGhiee

+ Vout

< Vin

Figure 24 Dead zone characteristic curve

The graphic shows that no output will be produced for certain small values.

Applied to the VHDL sensorimotor loofhis consists of seatg a threshold in the
integrative control. The algorithm checks the value of the integral after finishing a sense
phaseln this case, the offset is negative. If the integral value is below the threshold

20



imposed by the deadne the control will jump tohie drive phase with the timer set to '0’

and there will be no driving motion. Introducing a dead zone on the systam has a
importantdisadvantage. It will cause the integral value to be close to the threshold value
when no external forces are appliedhe case torcewereapplied, the algorithm would

react faster to one direction more than the other. This is because in order to drive ( in this
case counterclockwise) the integral value needs to rise from the threshold up to the energy
threshold set up @rof. Dr. Hild in [1] therefore sensitiveness is lower on this direction.
Additionally, it's a good choice to reset the integral variable. This way the motor will be as
sensitive in both directiomsnother matter is that the drift is going to happéy iarone

direction sdhe best option is to apply asymmetridead zongn this cas¢éhat meanto

displace the characteristic cuovihe negative sides seeon the figure:

+ Vout

“ Vin

v

Figure 25 Asymmetrical Dead Zone characteristi curve

The reason for this, it's that there is no interest in having a deddrzbeepositive
values because the offset is alg@iyg) to bein this casenegative. This ways achieved
at least the best possible response in one of the twmdgetthe motor.

21



7.2.Linear compensation
Being provedh the6th chapterthatthe drift is linear oatime basisit can be corrected
by capturing the offset for a certain sense time and then apply basic geometry (Thales
theorem) to calculate the comgetion needed to correct the drift for any sense time:

Offset(t2)
Offset(tl)

11

t2

Figure 26 Compensation triangle

50D o 00D
0 o
6O o Jy = 5D & Iy

In VHDL:

Compensation_27<=std_logic_vector  ((Offsetcapture*
('signed ("0"&tsense)+1))/( signed ("0"&captureTime)/9999));
Offsetcompensation <= Compensation_27(17 downto 0);

WhereOffsetcapture  andcaptureTime are 0" & and ¢, respectivelgnd
Offsetcompensatio n and tsense are0" (RM® ¢ ando,.

Compensation _27 is just an auxiliary varialite deal with the operation without
overflowing.

The advantage of this method against the dead zone is that sensitiveness of the CSL is the
same for both dirdoins. The algorithm has the same response on the motor no matter the
value of the voltage.

A last thing to point out is the error in the calculation of the compensagimactice, this
translates into not fixing completely the dnfthe measure.

22



7.3.Measures module. Finite State Machine
There's a more stylish solution tdfifnally and for all the drift caused by the offsétef
I GModulator.The "measures.vhd" module can be modifiethpture the offset for a
certain sense time and tteibtract theoffset value every time a sepkase ends. That
way, when the drive phase starts, the voltage will be already compensated.

As said before, th€SL algorithnfil] is based on an integrative control. The integration is

never reset on a time basis. Thataamn s t he dr i f Modulawuoffsetccanby t he
only be compensatedcea sense phagefinishedA good way to overcomasgiproblem

would be building the integral through the addition of average voltages.

4+ RealIntegral  ~7777°
Sampled Integral
mn
eak
21|
~ \
f s
L }"'
/li-
— [
\ /
s \
/|
[
’
' - > time
Sampling
time

Figure 27. Measure sampling

The average voltage asrepresentative value of the back EMfasured during a time
window (sampling time). The onaf is built by the contribution of all previous voltages.

The advantage of this method is that it's possible to compensate the offset before the
integral is obtained and therefore the algorithm will work with an already adequate measure
without drift.

Once this is understood, fixitige offsetin VHDL becomes a trivial problei.Finite

State Machind=EM with two states can (1st) capture the offset. This is just a normal
voltage capture when no external forces are applibed motor And (2nd)obtainthe
voltage value, depending on the sense time.

4 Of coursewriting about "real integral” is nah accurate terprconsidering that the analogical differential
voltage is being sampled with a 10MHz clock. From now on, the reader should understand this term as
abbreviation of the correct one.

23



The next figure shows the FSM flow diagram:

aRST
_\—-[ INI

?
timer=measure
Time

-~/

timer=timer+1

-~

NO

A 4
timer=0
offset=voltage
voltage=0

’—[ RDY }~ |

timer=timer+1

integral=integral+voltage_reg

timer=0
NO . YES voltage=0
timer=measure
Time
A YES

voltage_reg=voltage-offset NO
valid_vm=1

Figure 28 Measure FSMflow diagram

This flow diagram is a simplified versiohthe FSM implemented in VHDIEirst
pressinghe switch "SWO0" of the ZYBOrpduces ansgnchronizedeset'aRST which

resets the registers and sets the FSM into "INI" state. Every rising edge of, ttie clock
condition "timer=measureTime" is checked, vidalgorithm is gathering the bits from
the ! O Modul atngthe valtage signal.df thencohdiianiis true, the timer
and voltage registers are reset and the offset captured. Then the FSM jumps to "RDY"
state.Once again, the condition is checked every rising edge of the clock. If the condition
is satisfied, theutput voltage "voltage reg" gets compensated with the offset and the
integral is build adding the current voltage to the accumulation of the previous ones.

24



In order to work properly, itgiportant to add some additional conditiomisincluded in
the diagamto prevent overflows in the values of "integral" and "volkedete the '+'
and *' operatios:

i f ((voltage(17)&voltage) - (offset(17)&offset)<131071)

and ((voltage(17)&voltage) - (offset(17)&offset)> -131072) then
voltage reg<=voltage - offset;

end if ;

andaso:

if ((integral(17)&integral)+(voltage_reg(17)&voltage req)<131071)

and ((integral(17)&integral)+(voltage_reg(17)&voltage_reg)> -131072)

and (voltage_reg>4 or voltage reg< -4) then
integral<=integral+voltage_reg;

end if ;

This guarantees thatoltage _reg" or "integral" are not overflowed. Because both are
signed variables, a way to achieve it, is to concatenate the MSB to the whole value and
increment the range as it would be done in a Two's Complemeet.nfitie value is

not betweerthe ramge ofa signed.8 bit variable-131072, 131071] the operation doesn't

take placét does computationallyut the result is n@tavednto the variableegistey.

Additionally, a small dead zone in "voltage reg" (betweerdduaits per sense phaise)
added in order to improve the correction. This fixes the small fluctuations produced in the
representative voltage and stops completely the measure drift.

25



8. Common modules description
This chapter coveesbrief description of the modules that are contméms thesis and
the other two theses mentioned in the abstract.

8.1.Clock sources
They constitutehe clock input signals for all the different sequential elements in the
system.

8.1.1. ClockTree.vhd (Inherited)
Generates and outputs different clocks from tBMH2 oscillator. These are required to
be routed in dedicated tracks to prevent

skew.
ClockTree.vhd

Inputs:

Clk_75Mhz p———
Clk_125MHz: source from external

oscillator Clk_12_188Mhz }——
Outputs: Clk_3 072Mhz }——
Clk_75MHz: clock input for the VGA Clk_500Khz
Clk_12_288MHz: not used Clk_250Khz

Clk_48Khz
—> Clk_125Mhz

Clk_3_072MHz: not used

Clk_500kHz: not used

Clk_2%kHz: clock input for the MIDI Figure 29 ClockTree moduleinterface
interface

Clk_48kHz: not used

26



8.2.Visual modules
In order to visualize pertinent data, some modules were added to the project. These VHDL
modules define shapes and numbers for a 1024x768 VGA standard. Some of the modules
were peviously made to this project while the others were made to extend this tool.

8.2.1. VGA1024.vhd (BP5)
Generates the pertinent synchronization signals to display data on a VGA with 1024x768/
70Hz resolution points and 16bits pixel color.

Inputs:
VGA1024.vhd

Clk_75MHz: clok input for the VGA

VGA_Color] 15..0]: inputs the color of the—] YGA_Color{15..0]
actual pixel. —— VGA_Backcolor[15..0]

_ VGA_Addr[21..0]
VGA_BackColor[ 15..0]: inputs the color

VGA_R[4..0] }——
for the background. VGA_G[5..0] —
Outputs: VGA_B[4..0]

VGA_HS |—
VGA_Addr [21..0]: vectors the position in VGA_VS |—
the screen for the pixel. > Clk_75Mhz

VGA_R [4..0]: depth for the red color _ )
Figure 30 VGA1024 module interface

VGA_G [5..0]: depth for the green color

VGA_B [4..0]: depth for the blue color

VGA_HS: synchronization signal that moves the pixel to one position right.

VGA_VS: synchronization signal that moves the pixel to one position down.

Simplemented by Benjamin Panreck

27



8.2.2. GridPaper.vhd (Inherited)
Displays a grid for the VGA. It prints
the current pixel of the gridwith the

GridPaper.vhd

background color when no other
module outputs a pixel.

Inputs: EIL

VGA_Addr[21..0]: vectors the position
in the screen for a pixel.

Outputs:

VGA_Addr[21..0]

VGA_BackColor[15..0]

VGA_BackColor[ 15..0]: outputs the
colar for the background.

8.2.3. ASCII_canvas.vhd(PdMNE¢)

Figure 31 GridPapermodule interface

Groups together characters in ASCII. Displays text information on the VGA screen.

Inputs:

ASCIl_canvas.vhd

VGA _Addr[21..0]: vectors the position
in the screen for a pixel.

push_vga: writes "PUSH" on the screea%L
when the logitevel is 1.

Outputs:

Color_out [15..0]: indicates the color of

VGA_Addr[21..0]
push_vga
Color_out[15..0]

#

Figure 32 ASCII_canvasmodule interface

the actual pixel to print.

6implemented by Pablo de Miguel Nogales
28



8.2.4. ASCII_signvhd (PdMN)
Contains the data on how to print
ASCII characters on the screen. WriteBCD.vhd

Inputs:

19/ i
VGA_Addr[21..0]: vectors the position BIN_in[18..0]
in the screen for a pixel. %L VGA_Addr[21..0]

ASCIl [6.0]: indicates the ASCII Color_out[15..0] LGIL
character to print on the screen -

Outputs: Figure 33 WriteBCD module interface

Pixel: sets a higdavel logic value when part of an ASCII character is supposed to be
printed on the actual position.

8.2.5. WriteBCD.vhd (PdMN)
Converts a binary number to BCD usirgdoubledabble algorithm.

Inputs:

BIN in [18.0]: a 19 bit number in Hex_sign.vhd

binary

VGA_Addr[21..0]: vectors the position?3/—| VGA_Addr[21..0]

in the screen for a pixel. LIL_ Value[3..0] Pixel }——
Figure 34 Hex_sign module interface

Outputs:

Color_out [15..0]: outputs the color of the BCD number.

8.2.6. Hex-Sign.vhd (Inherited)
Contains the inforation on how to print a hexadecimal number on the VGA

I ts:
nputs ASCII_sign.vhd

VGA_Addr[21..0]: vectors the position in

the screen for a pixel. 22
—<&/{ VGA_Addr[21..0]
Value [3..0]: indicates the hexadecim

number (0 to F) + ASCII6..0] Pixel

Figure 35 ASCII_signmodule interface



Outputs:

Pixel: Pixel: sets a hilgivel logic value when part of a lkexamal number is supposed to
be printed on the actual position.

8.2.7. WriteSigned.vhd (PdMN)
Converts an 18bit number to a signed decimal value with 6 digits for displaying it on the
screen.

WriteSigned.vhd
Inputs:
BIN_in [17..0]: binary number interprete.d%L BIN_in[17..0]
in Two's complemén 22/ 1 vea Addr{21..0]
VGA_Addr[21..0]: vectors the position in

_ 16
the screen for a pixel. ColorQut[15..0] +
Figure 36 WriteSignedmodule interface

Outputs:

Color_out [15..0]: outputs the color of the 6 digit decimal number.

8.2.8. ShowScope.vhd (Inherited)
Draws a time graph on the screen based on a 7 bit value.

Inputs:
ShowScope.vhd

VGA_Addr[21..0]vectors the position

in the screen for a pixel.
22/ | VGA_Addr[21..0]
Value [6..0]: 7 bit binary value to show7

on a graph + Value[6..0] .
Outputs: VGA_Color[15..0] #
VGA_Color [15..0]: outputs the color * Figure 37 ShowScopemodule interface

the graph.

30



8.2.9. ShowVBar.vhd (Inherited)
Draws a vertical bar on the screen with
its size depending on i value. ShowVBar.vhd

Inputs:

VGA_Addr[21..0]: vectors the positiol’\%L VGA_Addr{21..0]
in the screen for a pixel. 7/ Value[6..0]

. o 1
Value [6..0]: 7 bit binary value that sets VGA_Color[15..0] —%

Figure 38 ShowVBarmodule interface

the size of the bar.
Outputs:

VGA_Color [15..0]: outputs the color of the bar.

8.3.MIDI data acquisition
These modules define thié necessary tools to obtain configuration parameters from the
user via MID] in this case the keyboard faders.

8.3.1. GetMIDI.vhd (Inherited)
Defines the MIDI standard to receive
messages, in this case, the keyboard.

GetMIDIL.vhd

Inputs:
CIkMIDI: MIDI clock input. Must be CLKMIDI
500KHz . . 8

—— Midiln  MidiByte[7..0] |2/
Midiln: input for the MIDI data MidiReady }——
received.
Outputs: Figure 39 GetMIDI module interface

MidiByte: received message convertedbionary.

MidiReady: sets a hifglvel logic value when the reception is finished.

31



8.3.2. faders.vhd (PLGY)
Implements the keyboard's faders

Inputs:

midibye [7..0]: received MIDI messag%)‘L
converted to -®it binary.

midiready: indicates that reception is
finished

Outputs:

fader19: outputs values between 0 and
127 from the faders.

faders.vhd

faderi[6.
Midibyte[7..0] fader2[6..
midiready fader3|[6..
fader4[6..
fader5[6..
faderg[6..
fader7[6..
fader8|[6.
fader9[6..

.0]

0]
0]
0]
0]
0]
0]

.0]

0]

FRF R R R

7 Pablo Lezcano Giméndx full description of this module is explained the next chapter.

32

Figure 40 fadersmodule interface



9. Faders module. Keyboard's battery of faders.

In order to introducany kindof parameterm real time, it's very useful to have the whole
fader battery of the keyboard implemented in a module. Each fader can be identified with
an specific 8 bit hexadeciradtressAlthough the module is configured by default for a
miditech-@mtrol keyboardcan work for any other MIDI keyboard if the addresses are
known.

(0x4A 0x47.0x51 0x5B/0x02 0X0A 0X05 0X15 0x16

FLU s
LWL

Figure 41 faders addresses of the MIDI keyboard

In VHDL, the address is set by default by the use of "generic" syntax:

Generic ( -- default adre sses for the faders in a miditech i2 control -
37 keyboard

fal: std logic_vector (7 downto 0):=x" 4A";

fa2: std_logic_vector (7 downto 0):=x" 47"

That way, if the keyboard changes, there's no neestiallymodifying thdile. The new
addresses can be set at the module definition using "generic map" syntax:

f aderControl: entity  work.faders

genericmap  (addl, add2, add3, add4, add5, add6, add7, add8, add9)

port map (MidiByte, MidiReady, fader9, faderl10, faderl1, faderl 2,
faderl3, faderl4, faderl5, faderl6, faderl17);

Where addX' is the 8bit hexadecimal address of each fader.

33



The FSM is as follows:

getfaderdata |e

»| getfaderaddress

midibyte[7]-1
and midibyte # 0xB0

Figure 42 fader battery FSM

First, the FSM checks if there'shange event in the fademniflibyte = OxB0")If the
condition is true, it means that the message is in"faohtrol Chandgemessage [7] and
the FSM can jump to the next state "01". Then the algorithm wadfte fuext byte, in

other words, until the byte has changed. The Mididatrd compels to have a '0' in its
MSB for the first data byte [7]. If both of them are correct, the FSM can spot which fader
was moved by the address and jump to stateFibally is checked once again the MSB

of the byte [7] and if everything is cortee FSM acquires the value between 0 and 127
from the fader (the MSB is always '0'[7]) and jumps back to "01".

In VHDL, the FSM reads as follows:

wait until rising_edge (MidiReady);
case state is
when " 00"=> -- waiting for controller message ( hex value "B0")
if midibyte =x" BO' then
state <=" 01"
end if ;
when " 01"=>
if midibyte(7) then
if midibyte /=x"  BQO' then
state<=" 00",
end if ;

34



else
ctrinr<=midibyte(6 downto 0);
state<= " 11"
end if ;
when " 11"=> -- waiting for controller value
if midibyte(7) then -- command byte
if midibyte =8x" BO' then
state <=" 01"
else
state <=" 00"
end if ;
else
case ctrinr is -- choosing fader
when fal=>
faderl<=midibyte(6 downto 0);
when fa2=>
fader2<=midibyte(6 downto O0);
when fa3=>
fader3<=midibyte(6 downto 0);
when fa4=>
fader4d<=midi byte(6 downto O0);
when fa5=>
fader5<=midibyte(6 downto 0);
when fa6=>
fader6<=midibyte(6 downto 0);
when fa7=>
fader7<=midibyte(6 downto 0);
when fa8=>
fader8<=midibyte(6 downto 0);
when ot hers =>
fader9<=midibyte(6 downto 0);
end case;
state<=" 01";
end if ;
when others =>
state<=" 00";
end case;
end process ;

Let's analyze the process step by step:

wait until rising_edge (MidiReady);
case state is
when "00"=> -- waiting for controller message (hex value "B0")
if midibyte =x" BO' then
state <=" 01"
end if ;

The process is invoked only when a rising edge of the signal "MidiReady" occurs. The first
state "00" waits fdhe first bytdo indicate a "@Gntrol Change'event ("midibyte = OxB0O")
[7]. If that happens, the FSM will jump to the state "01".

35



when " 01"=>
if midibyte(7) then
if midibyte /=x"  BO' then

state<=" 00";
end if ;
else
ctrinr<=midibyte(6 downto 0);
state<=" 11";
end if ;

The FSM gets ready for the second. bitte standard compels the MSB of the byte
"midibyte(7)" to b&)' [7] If the condition is not satisfied, the FSM will jump to the initial
state "00" pstay at "01" if the byte is considered again as an status byte with a control
event. If none of this happened, the byte correctly indicates the address of the
corresponding fader and the FSM can jump to the last state.

when "11"=> -- waiting for contr oller value
if midibyte(7) then -- command byte
if midibyte =8x" BQO' then
state <=" 01"
else
state <=" 00"
end if ;
else
case ctrinr is -- choosing fader
when fal=>
faderl<=midibyte(6 downto 0);
when fa2=>
fader2<=midibyte(6 downto 0);
................. (2] (oA

when others =>
fader9<=midibyte(6 downto 0);
end case;
state <=" 01"
end if ;
when others =>
state<=" 00";
end case;
end process ;

The "11" state also checks the MSBroflibyté as required by the standpffd Then the

first data bytgctrinr) is compared with the addresses of the faders which are either
geneically stored or specified in the module definition. When the fader address matches
the one captured in "ctrinr", teecond data bygets registered in its respective variable
"faderX".

36



There's also onastthing to point outit the end of the code:

when others =>
state<=" 00";

The reason for this is simple. In the absenaeadyachronous reset, the FSM could start
in a unknown state. This forces it to jump to "00" and wait for the bytes to arrive.

10. Systems based on parameterized thresholds

10.1. System overview
As the name indicates, these models are all based on setting up a thresholditisat, when
surpassed, will stop the normal operation of the sensorimotor loop. This is achieved using
a module that receives the voltage together with theotdrpainameter and decides if a
push happened. If a push occurs, an output signal will be gefratéeghore” signal is
checked in the sense phase of the CStitlagolf the signahas higHevel logic valye
the driving phase will be skipped.

Figure 43 Parameterized thresholdsimplified diagram

Where "mdat" and "ignore" are binary signals, "voltage" and "Threshold parameter" are 18
bit bus type signals.

Working with an external module to detect the pushes atlowplement the full
behavior without needing to change the control module where the sensorimotor algorithm
is executed and therefore no major changes are produced in the module.

37



